Extensions 1→N→G→Q→1 with N=C22 and Q=C4xDic5

Direct product G=NxQ with N=C22 and Q=C4xDic5
dρLabelID
C22xC4xDic5320C2^2xC4xDic5320,1454

Semidirect products G=N:Q with N=C22 and Q=C4xDic5
extensionφ:Q→Aut NdρLabelID
C22:1(C4xDic5) = C22:C4xDic5φ: C4xDic5/C2xDic5C2 ⊆ Aut C22160C2^2:1(C4xDic5)320,568
C22:2(C4xDic5) = C4xC23.D5φ: C4xDic5/C2xC20C2 ⊆ Aut C22160C2^2:2(C4xDic5)320,836

Non-split extensions G=N.Q with N=C22 and Q=C4xDic5
extensionφ:Q→Aut NdρLabelID
C22.1(C4xDic5) = C24.2D10φ: C4xDic5/C2xDic5C2 ⊆ Aut C2280C2^2.1(C4xDic5)320,85
C22.2(C4xDic5) = C20.60(C4:C4)φ: C4xDic5/C2xDic5C2 ⊆ Aut C22804C2^2.2(C4xDic5)320,91
C22.3(C4xDic5) = M4(2):Dic5φ: C4xDic5/C2xDic5C2 ⊆ Aut C22160C2^2.3(C4xDic5)320,112
C22.4(C4xDic5) = M4(2):4Dic5φ: C4xDic5/C2xDic5C2 ⊆ Aut C22804C2^2.4(C4xDic5)320,117
C22.5(C4xDic5) = C20.35C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C22160C2^2.5(C4xDic5)320,624
C22.6(C4xDic5) = M4(2)xDic5φ: C4xDic5/C2xDic5C2 ⊆ Aut C22160C2^2.6(C4xDic5)320,744
C22.7(C4xDic5) = C20.37C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C22160C2^2.7(C4xDic5)320,749
C22.8(C4xDic5) = C24.D10φ: C4xDic5/C2xC20C2 ⊆ Aut C2280C2^2.8(C4xDic5)320,84
C22.9(C4xDic5) = (C2xC20).Q8φ: C4xDic5/C2xC20C2 ⊆ Aut C22160C2^2.9(C4xDic5)320,88
C22.10(C4xDic5) = (C2xC40):C4φ: C4xDic5/C2xC20C2 ⊆ Aut C22804C2^2.10(C4xDic5)320,114
C22.11(C4xDic5) = C4xC4.Dic5φ: C4xDic5/C2xC20C2 ⊆ Aut C22160C2^2.11(C4xDic5)320,549
C22.12(C4xDic5) = C20.42C42φ: C4xDic5/C2xC20C2 ⊆ Aut C22160C2^2.12(C4xDic5)320,728
C22.13(C4xDic5) = C8xC5:2C8central extension (φ=1)320C2^2.13(C4xDic5)320,11
C22.14(C4xDic5) = C42.279D10central extension (φ=1)320C2^2.14(C4xDic5)320,12
C22.15(C4xDic5) = C40:8C8central extension (φ=1)320C2^2.15(C4xDic5)320,13
C22.16(C4xDic5) = (C2xC20):8C8central extension (φ=1)320C2^2.16(C4xDic5)320,82
C22.17(C4xDic5) = (C2xC40):15C4central extension (φ=1)320C2^2.17(C4xDic5)320,108
C22.18(C4xDic5) = C2xC4xC5:2C8central extension (φ=1)320C2^2.18(C4xDic5)320,547
C22.19(C4xDic5) = C2xC42.D5central extension (φ=1)320C2^2.19(C4xDic5)320,548
C22.20(C4xDic5) = C2xC8xDic5central extension (φ=1)320C2^2.20(C4xDic5)320,725
C22.21(C4xDic5) = C2xC40:8C4central extension (φ=1)320C2^2.21(C4xDic5)320,727
C22.22(C4xDic5) = C2xC10.10C42central extension (φ=1)320C2^2.22(C4xDic5)320,835

׿
x
:
Z
F
o
wr
Q
<